Judge Mohamed Chande Othman and Dag Hammarskjold Foundation Director Emeritus Henning Melber (photo source UNA Westminster)
Here is very good news I got this morning from a friend, with thanks to all of the friends of Hammarskjold!
“On 30 December 2022, the UN General Assembly passed Resolution A/77/L.31, which authorises the renewal of the UN’s ‘Investigation into the conditions and circumstances resulting in the tragic death of Dag Hammarskjöld and of the members of the party accompanying him.’ It further authorises the reappointment of the Eminent Person, Judge Mohamed Chande Othman, to lead the investigation.
The Resolution was initiated by Sweden and co-sponsored by 141 Member States (out of 193). The US and the UK did not co-sponsor the resolution.
The Resolution follows Judge Othman’s latest report (A/76/892), which is readily available on the UNA Westminster webpages on developments relating to the Hammarskjöld plane crash (along with various other significant documents and updates).
In this latest report, Judge Othman writes:
‘…I respectfully submit that the burden of proof to conduct a full review of records and archives resulting in full disclosure has not been discharged at the present time. Indeed, information received from other sources under the present mandate underscores that it is almost certain that these Member States [that is to say, the USA, the UK, and South Africa] created, held or were otherwise aware of specific and important information regarding the cause of the tragic event. That information is yet to be disclosed.’
Reading old letters from 1961, I learned Vlado’s personal request at his death was for his eyes to be donated, and for his ashes to be scattered over Mont Blanc. He was not able to donate his eyes, but it makes me happy knowing he is high up in the mountains he loved so much. Rest in peace, dear Vlado.
60 years ago today, Vlado, and everyone on board the Albertina with him, were shot out of the sky, hunted down and murdered by white supremacist mercenaries. There were so many people that wanted them dead. Our family demands that all stonewalling nations connected to this crash, the CIA, the NSA, all spy agencies, groups and organizations, including the United Nations, open up their archives and declassify all records NOW. The only way to break the chains of racism, handed down from our ancestors, is to hold our past to the light and examine it without reservations, so we can learn from our mistakes and not keep repeating them, this is true wisdom and maturity!
September 17, 2021, will be the 60th anniversary of the plane crash that killed our uncle Vlado, Dag Hammarskjold, and 14 of their brave colleagues while flying on a peace mission to Ndola, and we continue to wait for justice. For this reason, I am especially grateful to those who have no direct connection to the crash, who have made it their mission to help us uncover the truth with independent research and inquiry.
In July of this year, Joseph (Joe) Majerle III shared his own analysis of the crash with all the relatives, and it is an incredibly thoughtful and moving effort to support us. The points he makes deserve serious examination, and I want everyone to read it, so I am publishing it here in full – it offers a new perspective that was eye-opening for me, and lifted my spirits. Thank you, Joe!
AN ANALYSIS OF THE EVIDENCE CONTAINED IN RHODESIAN REPORT’S ANNEXES II AND III AN D THE U.N. GENERAL ASSEMBLY REPORT A/5069 PERTAINING TO THE CRASH OF DOUGLAS DC-6B SE-BDY S/N 43559 ON SEPTEMBER 17-18, 1961
By Joseph Majerle III
PREFACE I AM NOT a professional aircraft accident investigator. I am writing this account because after reading the reports of the crash, the professional aircraft accident investigators that were tasked with determining the facts of this tragedy, or for that matter, anyone else that has viewed the evidence contained in the above–mentioned files, have not come forward and pointed out the glaring misperceptions, dismissiveness of obvious real evidence, and inappropriate focus on irrelevancies that shaped the conclusions of the reports. In addition, there is at least one aspect that I can only describe as a deliberate inaccuracy that I consider to be of decisive importance. The Annex III and U.N. A/5069 reports, following the original Board report, did not effectively question the basic premises of the Investigating Board report as presumably would have been their purpose; which is why nearly 60 years after the crash this subject is still very unresolved for a surprising number of people.
I AM PRIMARILY, an aircraft mechanic. But, I earned a private pilot’s license and had begun commercial and instrument flight training before earning any of my mechanics ratings. Before I had any ratings at all, I had already built and flown my first airplane out of salvaged, crashed, repaired and new parts. At this point, I was already self-employed in the aircraft maintenance, salvage and rebuild business. I started salvaging airplanes from crash sites in 1974, studying whatever evidence was left at the scene in an effort to understand what and how the accident happened. With the advent of the Internet and the posting of Civil Aeronautics Board (CAB) and National Transportation Safety Board (NTSB) accident reports online, I have been able to read many reports going back to at least to the mid 1930’s because I was interested in learning what was known about particular incidents that I had heard about as a youngster, and for well into adulthood.
I decided to abandon thoughts of becoming a professional pilot because at the time there were probably ten newly qualified commercial and airline transport pilots competing for every available job opening, and operators had their pick of the best. In the maintenance field, however, it was the opposite story; at the flight school there was only one mechanic, recently licensed, and not very confident at all in his abilities. As an experienced, but not yet licensed mechanic, I assisted him in getting the flight school’s grounded aircraft operational again. For all intent and purpose, I have never been without work since.
I do not think it is inappropriate that I should be the person to write this report. What is required here is a broad-based, general knowledge of aviation, aircraft, their operations. I do not think an investigator has to have a DC-6 type rating to know how they are operated; provided one consults pilots with the rating to confirm what published documents like airplane flight manuals and Approved Type Certificate (A.T.C.) specifications say. Here in Alaska, it is very possible that we currently have the largest base of DC-6 experience operating, on a daily basis, in the world. I have known a great many DC-6 type rated pilots in my lifetime, to say nothing of having been related to one by marriage.
Any reader who wants to challenge what I state in this document is urged to consult with their own “expert(s)”. I do not claim to be an expert on any aspect of this; however every DC-6 expert that I consulted throughout this process confirmed readily what I thought to be the case when I presented them with the evidence. So that is why I think that it is time to reexamine what actually happened during the crash, as opposed to what most of the world thinks happened. Because, the two are very different.
It is not within my area of expertise to speculate on the “why” of what caused the precipitating action of this accident. I have read a number of reports and books over recent years that attempt to tackle that subject, but I have nothing to contribute to what other researchers, with apparent objective credibility, have amassed.
I am, however, bothered enough by the acceptance of the original Rhodesian premises by the world at large and former U.N. officials, and the effect these misconceptions have had on the descendants, relatives, and friends of the victims, crew and passengers, that I am submitting this document to whom it may concern.
PREMISES The Annex II report sets a number of premises that have gone unquestioned. They are, and I will attempt to order them in terms of occurring chronology, as follows:
That the aircraft crashed during the course of making a “normal instrument approach”.
That the aircraft was not on fire prior to its collision with the anthill on the ground.
That the crew could be faulted for not having transmitted a declaration of emergency during the approach.
That the crew could be faulted for the wreckage being found with the landing lights in the off position.
That the captain could be faulted for not having broadcast all of his intentions to the destination airport, especially in an area known to be hostile to U.N. personnel. These points, in addition to others, are where I will begin.
THE INSTRUMENT APPROACH Annex II, part 3, par. 12.6 “. . .hit trees and the ground at a shallow angle of 5 degrees or less, at what appears to have been normal approach speed, at an altitude of 4357 feet MER (?) with its undercarriage locked down, flaps partially extended, and with all four engines developing power and all the propellers in the normal pitch range, heading towards the Ndola radio beacon on a landing approach.”
There are four main parts of this statement to be addressed. They are to be considered in light of the aircrafts position in relation to the Ndola airport, which according to Annex II Part 1 par. 1 item 1.1 was “From Ndola aerodrome control tower 8.05 nautical miles on a true bearing 279 degrees.” 8.05 nautical miles is over 9.25 statute miles, from the airport at which it was intending to land.
01. “Normal approach speed” in my experience is based upon the aircraft’s stall speed, landing speed, and minimum control speed in multi-engine aircraft. It varies with combinations of all of the above and is normally calculated in percentages above the stall speed, which itself varies with differing weights, centers of gravity, bank angle, flap/high-lift device deployment, etc. In standard airport traffic area there is also a speed limit of 156 knots (180 mph.) Since the beginning of the age of the jumbo jets and the airports from which they operate, the speed restrictions have been raised because many of that class of aircraft have higher stall speeds than 156 knots (180 mph.), so for them, there is only the 250 knots (288 mph.) below 10,000 feet rule, which I believe applies to all airspace complying with ICAO rules.
Normal approach speed, at that stage of the approach, should have been 160 knots (184 mph.) or even more in this case, with this captain concerned about the possibility of armed, hostile aircraft in the general area. In consultation with a DC-6 captain, he said except in very unusual circumstances the standard instrument approach speed up to the final approach fix, which in this case was the Ndola NDB, 2.5 nautical miles, 2.875 statute miles from the runway end, would be 160 knots (184 mph.) Maximum flap extension speed is 139 knots (160 mph.)
The point that needs to be made here, and clearly with no ambiguity, is that there would have been no reason whatsoever in a normal instrument approach, especially in good weather conditions, to have had the aircraft slowed down to landing configuration while over 9 miles away from the airport. Standard procedure would be to begin deploying landing flaps and landing gear upon reaching the final approach fix, which in this case was the Ndola NDB (non directional beacon), approx. 3 miles from the runway, which is a fairly average distance for an NDB or a VOR (very high frequency omni-directional range) to be situated to a runway. That the aircraft was found configured for landing at the farthest point it was going to reach away from the airport during its instrument approach, means that the pilot would have had to slow-fly it throughout all of the rest of the approach procedure to a landing at the airport. There is absolutely nothing normal about that. This was the very first thing that struck me when I initially read the report. It is indicative, however, OF A LANDING ATTEMPT AT THE LOCATION WHERE IT CAME TO REST.
02. “. . .with its undercarriage locked down, flaps partially extended, . . .” The DC-6 series aircraft have a stall speed of approximately 80 knots (92 mph.), and consequently a lower approach speed than the jet airliners that replaced them beginning in the 1960’s. The closest replacement is the Boeing 737 series, which like the DC-6 have an approximately 30,000 lb. payload and were generally intended to operate from the same runways that the DC-series used. While the Boeing will neither take off or land and stop in as short a distance as a DC-6 due to its higher stall and approach speeds, the differences are not gigantic. For this project I consulted a Boeing 737 captain whose career spanned the 737-200 series thru the 900 series, and was told, again, that landing gear and landing flap settings were deployed upon reaching the final approach fix, which is generally approximately 3 miles from the end of the runway. This, in an aircraft with higher approach and landing speeds.
Wing flaps increase both lift and drag, and were originally developed to enable an aircraft to make steeper approaches to land without increasing speed that would need to be bled off during rollout after touchdown, in other words to shorten the landing to a stop distance. That they would also reduce the takeoff distance and improve the climb performance was a secondary consideration. Annex II part 10 par. 10.3.4.2 states that all indications were that the flaps were in the 30 degree position. I would estimate that this is approximately optimal for lift and slow flight which would be desirable for the lowest approach and landing speed based upon experience with numerous different types of aircraft; I have flown a number of different airplanes with flap deployment angles beyond 35 degrees and noticed that at angles much beyond 35 resulted in much higher drag components than lift components and engineering books generally support that observation based on wind tunnel testing. The higher angles of extension were generally useful only for bleeding off excess altitude quickly in situations where a pilot wanted to get a lot closer to the ground in a hurry. To my experience, 30 degrees was optimal landing flap in many, but not all, types. Again, it is indicative OF A LANDING ATTEMPT AT THE LOCATION WHERE IT CAME TO REST.
03. “. . .with all 4 engines developing power . . .” 10.1.4 states “. . . the four engines were broken from their mountings and severely damaged by impact and subsequent fire . . . .” Examination of photographs in the appendix reveals that engines #1, 2, and 3 had fallen to the ground after the aluminum nacelle structures melted away in the fire subsequent to coming to rest, and the straight steel tube struts of the actual engine mounts are still straight and attached to the engines. Furthermore, the above mentioned engines are all still in the approximate positions they would have occupied on the wing with only the #4 engine having detached in the crash sequence, and it is laying in probably very close proximity to where it was wrenched from the wing during the cartwheel arc.
The second thing that struck me upon first viewing the wreckage plan is that almost the entire aircraft is still in one place.10.2.1 “The main wreckage was contained in an area approximately 60 feet by 90 feet . . . .”
The DC-6 is almost exactly 100 feet long with a 117’6” wingspan, which means after it came to rest and cooled down the whole of the main wreckage would fit within the same rectangle as its original size. The wreckage plan, as surveyed, indicates that the vast majority of its original parts ended up oriented in the approximate positions that they occupied prior to the crash. In other words, throughout the crash sequence, very little of the aircraft was displaced from itself until very close to the end of its movement. This indicates a low energy crash with a very slow speed impact, at least relative to even minimum flying speed, to say nothing of a 160 knot instrument approach speed. 160 knots (184 statute mph.) is a velocity of almost exactly 270 feet per second. The wreckage plan length of 760 ft. from first point of treetop contact to ground strike of the fuselage nose (10.1.1) is approximately one half of what I have observed to occur in unintentional controlled flight into terrain (CFIT) crashes during my time in this business. It is, however, in addition to viewing the appendix photographs of the site that were taken from the ground and from the air, completely consistent with the path of an aircraft with an 80 knot stall speed being intentionally landed.
Aircraft that are only capable of even 120 knots in unintentional CFIT crashes generally never resemble an airplane by the time all of the parts come to a stop, their propellers are almost never still attached to the engines, their landing gear are almost never anywhere near where they were originally attached, and their tail groups when broken off have usually broken the control cables in overload displaying a “broomstraw” effect. In this case, when the tailcone broke off in the cartwheel there wasn’t enough energy left to pull the cables apart. If I had to estimate the minimum speed required to disintegrate the nose section of the fuselage such as is displayed in the wreckage plan and what can be seen of the remains in the photographs, I would say that it would require at most only about 50 to 60 knots to do that kind of damage. It was explained to me in 1986 by a good friend that was a DC-6 captain at that time, that the 4-engine DC-series had a somewhat fragile nose landing gear structure but not unusually so compared to other makes in it’s class; but when they tore out of the fuselage it often did a lot of other damage and could possibly make the incident beyond economic repair. I saw an example of that just last fall (2020) where a DC-4 had its nose landing gear torn out in a ditch at barely more than walking speed; the damage extended through both sides of the factory break joint where the nose (flight deck, cockpit) section attaches to the forward fuselage section and the operator decided that it was beyond economical repair, according to a conversation with his director of maintenance. This should reflect no discredit on the part of the designers; from personal experience repairing nose landing gear damage on many different types of nosewheel type airplanes it is generally a fragile part of all of them.
04. “. . .and all the propellers in the normal pitch range, . . .” This statement stretches ambiguity beyond limits. The Hamilton Standard 43E60/6895A-8 propellers such as were installed on SE-BDY (of which I have owned several sets and still possess a crate full of hub and dome parts) has a normal pitch range of approximately 90 degrees from neutral for feathering and forward thrust and maybe 20 degrees aft of neutral for reverse thrust. 10.3.4.4 states: “Inspection of the propeller stop ring assemblies confirmed that the angular setting of all propellers was in the constant speed range.”
First, the stop rings do not determine the constant speed range; they are only the outer limits of the blade travel, at full feather and full reverse. The constant speed range is a function of the engine driven governor and the distributor valve assembly housed within the hub and dome and is sensed with electrical switches attached to the blades and actuated with an electric motor driven oil pump mounted on the engine reduction gear nose case immediately behind the propeller hub, with a rubber/spring lip seal interfacing the parting surfaces. The only way to determine the angular setting of the blades in this installation is to measure with a propeller protractor against the rotational axis.
Second, the constant speed range is also a function of the engine turning at a high enough RPM for the governor to supply enough boosted oil pressure to operate the distributor valve to keep the blades off of the low pitch stop, which in reversing propellers such as these is again a function of the distributor valve. But for the purposes of this analysis, that is not important.
Third, the photographic evidence, is what is important. The U.N. report appendix contains photographs with 16-digit letter/number codes, of which I saved fifteen to a file, beginning with S-0727-0004-01-00002, and following will be referencing the last two digits. I will reference the individual blades in clock face numbers, as viewed from the rear of the engine looking forward as is standard practice.
It is difficult to differentiate between engine#1 and engine#4 because there were fewer views of #4, but both could be identified by orientation with the wreckage plan. It is readily apparent that both of these had almost identical damage to their blades, except that the third blade on #4 is not visible. Photo 07 shows #4 with the 10 o’clock blade in standard reverse thrust position. The 2 o’clock blade has had its spring pack drives sheared in overload during the ground strike and has rotated on its pivot axis into an approximate reverse feather position, with its trailing edge forward instead of its leading edge when in standard feather mode. This indicates that its leading edge struck the ground hard enough to shear the spring packs while the leading edge of the blade was rotated aft of its plane of rotation, in other words while at a reverse thrust angle. With 2 of the 3 blades coming to rest in a reverse thrust angle, I think it’s safe to assume that the propeller was fully operating in the reverse thrust mode at time of impact.
The #1 engine is well represented in the photographs, with all blades visible. Photo 16 shows the 10 o’clock blade in standard reverse thrust position, spring packs intact. The 2 o’clock blade is in reverse feather position, spring packs sheared as per the same blade on the #4 engine, and the 6 o’clock blade is also in standard reverse thrust position, spring packs intact, but has bent aft throughout its length progressively to the tip which is common when rotation is coming to a stop while the engine and airframe behind it are still moving forward. That the propellers on engines #1 and #4 are far less damaged than the ones on #2 and #3 is partially due to the fact that they were mounted higher on the wings due to wing dihedral, and didn’t penetrate the ground as deeply when they struck.
Photo 07 shows #2 engine with its 2 o’clock blade rotated into a reverse feather position also, spring packs sheared. The broken off shank of what would be the 10 o’clock blade is in standard feather position, spring packs intact. What would be the 6 o’clock blade is not visible in this view, and I haven’t found any other photos showing it, but based on its proximity to the ground I think it’s reasonable to assume that it also was sheared off during its ground strike.
Photo 33 shows #3 engine, which reveals its 2 o’clock blade broken off at what I would estimate at most to be its 25” station, which is measured from the propeller shaft centerline. It is clearly in a standard reverse thrust position, spring packs intact. The 10 o’clock blade is broken off 1.5” to 2” outboard of the hub clamp halves, so close to its round shank section that its angular position is inconclusive. The 6 o’clock blade has broken off inside of the hub clamp halves through the blade bushing bore; it obviously fragmented into a number of pieces. As with all three of the other engine’s propellers, I think it is reasonable to assume that the #3 propeller was fully in the reverse thrust mode when the blades struck the ground. I would deduce from the condition of the #3 propeller that it was positioned to penetrate the ground the deepest and most solidly of the four. The #3 engine also received by far the most fire damage after coming to rest most likely due to its proximity to the most remaining fuel in the right hand wing. I will discuss this in more detail later.
I have thought long and hard about how to estimate how much power the engines were developing at the moment the propellers struck the ground, and it is a difficult question. The propeller blades were group 4, an early post-war development and were the strongest of all the Hamiltons ever built for piston engines, generally used only on the latest and most powerful post-war radial engines. I am not aware of any empirical strike strength tests, which is not to say that Hamilton Standard didn’t conduct any, I just haven’t heard about them. If I had to guess I would estimate that it would require a high-cruise manifold pressure setting to shear them off and break them through the blade bore bushing hole as is evident in the photos. The captain clearly had gotten the throttles well forward and was making a lot of reverse thrust before the nose landing gear collapsed and the nose and propellers hit the ground.
THE WRECKAGE PLAN The Annex II wreckage plan and the photographs of the descent path appear to show a deliberate, controlled descent with directional control maintained all the way to the anthill, as though it was intentional, and I am suggesting that it was.
I had difficulty scaling the exact measurements of where the small parts that were torn from the aircraft came to rest relative to the initial tree contact, and varying figures are given for the height of the anthill from 9 to 12 feet, which I would have thought would be consistent with the whole site having been charted by professional surveyors, but in reality this is not important.
What is important is to realize that only 760 feet from initial treetop contact the aircraft was rolling with all three landing gear on the ground, right side up, travelling in a straight line, directionally under control.
At some point not far from the anthill the left wing bottom skins were breached, presumably by a tree trunk, the top of which would have been broken off by the wing leading edge and spar(s), opening up one or more fuel bays and dumping their contacts to the ground in a concentrated area, which fueled the incinerated area shown at that location in the wreckage plan. As stated earlier, this would contribute to the reason that the #1 and #2 engines on the left side of the aircraft were less heavily fire damaged post-crash than the engines on the right side. However, the overall strength of the main wing box structure remained sufficiently adequate to retain its basic shape to provide the arm about which the entire aircraft would pivot upon striking close to the base of the anthill, leading edge down, and not be sheared off at that point. Obviously, the wing leading edge outboard of the engines is what actually contacted the anthill, and initiated the cartwheel, as both of the left hand engines stayed with the wing and came to rest close to their original positions on the wing.
At some point close to the anthill, (and somebody could probably do a better job of quantifying the actual measurement from the wreckage plan), but it is not marked as such, the nose landing gear structure was overloaded in the undisturbed forest terrain and collapsed. Which is to say that the oleo strut and its retraction/extension linkage was torn from its mounting structure and its broken pieces were spread along the ground from forward movement of the rest of the aircraft behind it. I looked long and hard in the wreckage plan to find the exact point where the nose gear departed, but could only find reference to a “steel shaft” alongside the base of the anthill, and couldn’t find it in the photos. Presumably, the “steel shaft” was the nose strut piston tube, which is a steel tube approximately 5” in diameter, and it was about where I would have expected it to be in this case. Other associated parts of the nose gear system were a little farther along the path, again where I would have expected them to be. I could find no reference to where the nosewheel and tire came to rest, which is important from the standpoint of knowing how long it was on the ground before failing, which was in some measure the fate sealer for the crew and passengers. I did find reference to an unidentified portion of wheel rim on the right hand side of the path and well before the anthill, but whether it was from the nosewheel or one of the dual main wheels may never be known. Photo 19 shows one of the main landing gear assemblies with the remains of both tires and wheels in place and another photo shows the same for the other MLG, so it is certain that all of the main wheel tires stayed in place throughout. While on the subject of the main landing gear, the DC-6 MLG units retract forward into their nacelle bays, and their retraction/extension links for normal operation on the ground loads the links in tension, which for metallic structures allows them to be at their strongest, especially in terms of retaining their shape when loaded. The photos show that the links had failed in compression and had bent, which would be expected to happen upon the main wheels striking the ground while traveling backwards during the cartwheel, and partially retracting back into their nacelle bays. But, effectively, they stayed in place throughout the crash, again indicative of a relatively low speed occurrence.
As stated above, shortly after landing with all three landing gear on the ground, close to the anthill, at probably the worst possible location and time, with all four engines evenly at fairly high power settings in reverse thrust in what would have been a desperate attempt to slow the momentum of the aircraft and get it stopped, (but what is in reality standard operating procedure), the nose landing gear collapsed, instantly dropping the nose section of the belly and fuselage to the ground, pivoting on the main wheel axles. When this happened, the propeller blades began contacting the ground, bending and breaking them off, and the wing leading edge from end to end rotated downwards, drastically lowering in height. As the fuselage nose belly skins, stringers, formers etc. began crushing and tearing away it allowed the wing leading edge to get even closer to the ground, until the left side contacted the anthill nearer the base than the top, which initiated the cartwheel. Had the nose gear remain in place, there is at least a chance that a relatively level wing might have been able to ride up and over it and the aircraft’s momentum to remain linear, and with even a few more seconds of reverse thrust as braking action, the survival odds would have increased dramatically.. The noted fragment of wheel rim found along the glide path, if from the single nosewheel, and if large enough to have allowed the tire to depart from the wheel, I think in this terrain would have guaranteed the failure of the nose gear assembly.
I think a further word here about center of gravity is appropriate. SE-BDY as it departed Leopoldville was handicapped with a forward C.G. (center of gravity), with little or no aft cabin load. The DC-6, as with all large airliners, was designed to carry its nominal 15-ton payload distributed throughout the cabin from end to end and as with most aircraft have the load approximately centered on the wing, since that is what is supporting everything. In this case, with the passengers and their gear in the forward part of the cabin, the C.G. would have been well toward its forward limit, known as nose heavy. This means that the pilot, under any circumstance, would have a harder time holding the nose off the ground with the elevators than if there was weight in the fuselage behind the main wheels assisting him with the balance.
I have flown airplanes with only the pilots in the front seats and nothing in the aft cabin where the nosewheel could not be held off the runway whatsoever upon landing. With power at idle, when the main wheels touched the nosewheel slammed to the runway instantly because the C.G. was well forward of the mains. At least three different DC-6 pilots I have known over the years have told me that they much preferred flying them with a somewhat aft C.G. because of the better balance. In this case however, I think it could be listed as a contributing factor to the deadliness because after getting the main wheels to the ground, with the propellers in reverse and no accelerated air flow over the elevators, the captain was unlikely to have been able to keep the nosewheel from slamming to the ground immediately and beginning the sequence of breakup of the forward fuselage structure.
ABOUT THOSE ALTIMETERS . . . There are numerous references throughout the reports about the barometric altimeters, three each, forming one of the major premises upon which the reports conclusions are based. So many, in fact, that I am not going to bother referencing them here. The Board (Annex II) and the Commission (Annex III) both spared no expense to prove beyond any shadow of doubt that the their Air Traffic Control (ATC) had properly informed the crew of the altimeter setting and that Transair had properly maintained their instruments and aircraft, as well, and that there should be no discredit reflected upon the servants of and the country hosting the visitors. If those visiting aircrews could not pay attention to their altimeters and keep from flying into the ground while executing an otherwise exemplary instrument approach it was not the host’s fault.. There is one very major problem with this.
There were four altimeters installed in this aircraft. The fourth altimeter was an “AVQ-10 Receiver Transmitter (Radar) “, per Annex II Par. 6.2 Page 15, line 3. That, and a reference on the “Enlarged Portion of Wreckage Plan” to a “Radio Altimeter” on the extreme left hand side of the page are the only times throughout all of the original reports that its existence was ever mentioned. And it was decisively important.
Mankind had long awaited a means to know exactly how far the ground was below you and how far away an obstacle was in front of you while making instrument approaches. Barometric pressure gauge instruments were reliable but didn’t give you all the information you really wanted and needed for making truly blind instrument approaches. With the WWII British development of the cavity magnetron, which made radar small enough to be carried aboard aircraft, it was a short step away to build an accurate radar altimeter. The DC-6 was among the very first of the postwar civil aircraft to be fitted with them. By then, airlines couldn’t afford not to have them. And all of the pilots that I have ever known use them when they have them during instrument approaches especially when near the ground. They tell me that they are a very reassuring and confidence-building device.
It is inconceivable that captain Hallonquist was not using the radar altimeter, if he needed an altimeter at all, throughout the portion of the instrument approach that the aircraft completed. Barometric altimeters are fine for flight where there are large safe heights above ground level and sufficiently accurate for keeping airplanes at known levels relative to each other but when you start getting close to the ground in conditions of poor or no visibility the radar altimeter is what is going to tell you where the ground or a solid object is in front of you.
I mentioned above about needing an altimeter at all. In the USA, in order to qualify for a private pilot certificate, a student must accomplish a certain number of landings and fly a certain number of hours at night during official after-sunset periods, (night time). This must be accomplished visually, under official VFR (visual flight rules) conditions. I am fairly certain that the rules to qualify for airman certificates in Sweden or the UK would be pretty similar, and in fact for all ICAO (International Civil Aviation Organization) countries. Without access to his logbooks, it’s a foregone conclusion to assume that with over 7800 flight hours captain Hallonquist was competent and comfortable with night VFR landings. On the night in question, the weather 38 minutes before the crash, per Annex II chap. 5 par.5.3 page 14, the visibility was 5 to 10 miles with slight smoke haze, with ceiling not given, but presumably nil cloud cover from the last prior routine weather observation, 3-1/2 hours before. So there is no reason to assume that the crew couldn’t see where the ground was.
Prior to the advent of aircraft with auto-land capability, which was probably not until at least the mid-1970’s and to my knowledge didn’t come into service until the early 1980’s, all, at least all civilian airplane landings were made visually by the human pilot. Even instrument landings were made visually, even when the approaches were made coupled to an autopilot. If at some minimum height above the ground at some certain distance from the end of the runway, and these numbers varied with different airports and with differently equipped aircraft, the pilot could not see the end of the runway to land the approach was called missed, power was applied and the aircraft climbed away to either try the approach again or proceed to an alternate airport where the weather was hopefully better. But all landings required the pilot, at some point, to see the runway visually. And the pilot was only using the altimeter to know where to not descend below. To this day, the vast majority of airplane landings worldwide are still done this way.
Upon reaching Ndola, the aircraft established communications with the tower informing them that they had the airport in sight. At that point the captain could have made a VFR landing within the airport traffic area (ATA) without following the instrument approach procedure. Transair company policy was that if the crew was unfamiliar with an airport, and captain Hallonquist had never been to Ndola before, an instrument approach was to be made. The captain could have ignored this but he was obviously the type of person that would rather follow the rules and go by the book than ever have to explain in the future why he did not. I fully understand this philosophy, it is how I’ve tried to live my own life. It can be well imagined that for an instant it crossed his mind that he could just set up and land while he was right there, but he knew that an instrument approach was just a few minutes more, no big deal, we can see the ground, no appreciable weather. In other words, he didn’t really need an altimeter to tell him where the ground was. He could see the ground. And the radar altimeter told him exactly how high above the ground he was.
THE PRECIPITATING EVENT To my observation, in the study of aircraft accidents throughout the course of my life, there is almost always a precipitating event that sets off a chain of actions, reactions, counteractions, etc. that results in the crashed aircraft somewhere on the surface of earth. In this case, it is known from Annex II that the captain communicated to Ndola tower that all was well and within minutes the aircraft was being incinerated with its own wing fuel and that fifteen of the sixteen occupants lives had ended, and that the last would succumb in less than a week. That person, Sgt. Harold Julien, was the only eyewitness to the crash.
To my experience, eyewitness testimony is considered evidence in a court of law, at least in this country. I am unfamiliar with Rhodesian law in the 1960’s, but in the USA in the 1960’s Sgt. Julien’s statements would have been considered evidence in a crash investigation. Since there is no other actual evidence to the contrary, and testimony of ground observers about the airport over-flight and entry to the instrument approach procedure are insufficiently conclusive to determine externally what the precipitating event was, it seems logical to me that Sgt. Julien’s statements, as brief as they are, are the only thing that can be considered as evidence in a search for the cause of the chain of events leading to the crash.
In the UN Commission report, par. 129., Senior Inspector Allen testified to the U.N. Commission that he spoke with Sgt. Julien and asked him three questions; 1. “What happened? He said: ‘It blew up’.” 2. “Was this over the runway? And he said ‘Yes’. “ 3. “What happened then? And he replied: ‘There was great speed—great speed’.” “It blew up—” “—over the runway.”
I have read all three of these reports several times and still don’t understand the reluctance of the investigators, including the U.N. and the Swedish observers, to not make those six words the central point, the number one item on the list of where to begin to find the truth about what happened. Especially from the standpoint of determining whether or not there is fault to be assigned to the flight crew.
Assuming Sgt. Julien was belted into any seat in the forward cabin, looking out the side window on whichever side he was sitting on, he may or may not have had a view of the lighted runway and the town of Ndola but it is likely that the captain would have informed the passengers that they had arrived overhead Ndola and would be setting up to land there. It would have been the last thing he could identify location-wise and anywhere in that vicinity for him would be “over the runway”. I don’t know if Inspector Allen was deliberately trying to trip him up or why he asked him if it was over the runway when he knew that the aircraft had overflown the runway and not blown up there, but, it seems to me, it was an unusual question to ask a person in Sgt. Julien’s condition. What I am getting at here is that Sgt. Julien knew where the runway was and that the aircraft had blown up. They sound like lucid answers to me, and not as though he was thinking about horses or submarines, for example.
In my view, in light of all of the data and evidence of all of the pages of all of the reports and the information displayed in all of the images of all of the photographs in the U.N. file, the only thing I can see that qualifies as a precipitating event is Sgt. Julien’s: “It blew up”. And he was the only one left that was there when it happened.
Airplanes have been blowing up for a long time, in fact for almost as long as they’ve been in existence. There is a lot of video of it happening; I can think of footage that I’ve seen going back to the 1920’s. And I’ve been on-scene to ones within seconds to minutes after the explosion. I’ve salvaged wrecks after the fact, and studied the effects of explosions on structures and materials.
To my experience and observation, on metallic structures, if some event ignites the fuel vapors, it is the vapors that explode and the still-liquid fuel then burns, but the explosive event is by then over. During the explosion some weak area in or near a seam will give way and tear open, leaving, in effect, a chimney from which the burning fuel would exhaust. In aluminum stressed-skin wet wing or bladder tank explosions, there is usually a torn section of skin along a rib or a stringer or even a spar, (weakened because of the drilled holes for rivets) that has opened up and from which the the fire burned upward out. I have never seen an example where the fire burned downward; only upward. Presumably, because heat rises.
In viewing video of air combat, of which many hours exist of footage of most of the combatant countries back to at least WWII, when an airplane being shot at catches fire and smoke begins trailing behind, it is subtle but noticeable that the flames are still burning upward and the smoke is trailing slightly upward.
Another thing that struck me when I was standing near a burning airplane at night, while the fire department was trying to extinguish it with water, which was rather ineffective, was how brightly a gasoline fire lit up the sky in the dark.
As stated earlier, aircraft fuel tanks have been blowing up resulting in the destruction of the aircraft for a long time, for a number of reasons. The incendiary (tracer) bullet was developed during WWI to ignite the hydrogen gas in enemy airships and observation balloons, and was very effective, not only for that purpose but also to ignite the fuel in airplane fuel tanks. As TWA 800 proved in 1996, chafing electrical wiring after arcing long enough could blow a hole through an aluminum alloy sheet and ignite fuel vapors that would explode the tank so violently that it initiated an inflight breakup. About two weeks after that, right here in Alaska an engine failure on a DC-6 led to a chain of events that resulted in ignition of one of the wing fuel tanks which was left to burn long enough to result in the wing folding up and an inflight breakup. Electrostatic discharge (ESD)(static electricity) igniting empty or only partially full fuel tanks was known to have damaged or destroyed (I am going by memory here) about 25 civilian turbojet airliners and comparable heavy military aircraft (bombers, tankers, transports) combined since the introduction of the jet age. For that reason, after an airliner lands at an airport and taxis to its gate and shuts down, along with chocking the wheels a ground cable is attached to a fitting in the structure to remove the static charge it has built up while flying through the air. An airline line mechanic colleague tells me that he has measured as much as 50 volts upon making that connection.
But ESD is unlikely to have been the cause of the explosion that SE-BDY experienced. However, the explosion that Sgt. Julien described is most likely to have been the precipitating event that caused captain Hallonquist to make the decision to get the airplane on the ground, now, immediately if not sooner.
FORCED LANDINGS Forced landings have happened throughout history for nearly countless reasons, but several of the reasons account for the vast majority of the occurrences. Topping the list would be engine failure; if your engine fails you have no choice but to put it down wherever you happen to be. That would be in the involuntary forced landing category. In the voluntary forced landing category, and some statistical database could prove me wrong, but to my experience inflight fire would be at the top. I have before me a list of seven airplanes that I had some thread of connection to in some form or other that were force landed by their pilots into whatever terrain was below them at that moment because it was the only chance they had to stay alive. One of the seven, the aforementioned DC-6, technically doesn’t qualify as an attempted forced landing, because of the captain’s indecision, but all of them resulted in aircraft that never flew again, and in five of the seven all survived, but with some minor injuries. In the other two, there were no survivors. The incidents I am referring to here all occurred in Alaska since 1977, and it is likely that there have been others that never came to my attention. All seven of them were due to inflight fires. One of the seven was a new customer of mine, but the aircraft was one I had never and was destined to never work on.
After almost five months of examining these three reports, the conclusion I would draw is that the case of SE-BDY fits into the category of a voluntary attempted forced landing due to an inflight explosion and fire that was successful until its final seconds, and then an unseen and un-seeable solid object ended its chance for a successful termination.
THE LAST ACTIONS I will attempt to re-create the final minutes of the flight of SE-BDY based on the information in the reports, as I would visualize it to have to have occurred. I want to remind the reader that the largest airplane that I have ever steered through the sky was a DC-3, which is for all practical purposes not all that different from a DC-6. The ancillary control systems in the DC-6 were substantially different in being mostly electrical relay controlled, it had two more engines, and there were more systems in general such as anti-detonant injection (water/methanol) for the engines, reversing propellers, BMEP gauges for fine-tuning engine power and fuel mixture, etc.; it is a considerably more complex machine. But for the purposes of understanding what actions were taken and their results, it would have been basically as follows:
01. The aircraft has descended from the east toward Ndola from its reported maximum cruise altitude of 16,000 ft. and establishes communications with the control tower. It has just flown a long trip, far out of its way to avoid aircraft hostile to U.N. personnel and has avoided radio transmissions as much as possible to avoid detection. The captain states his intentions to enter the NDB instrument approach and is told to report reaching 6000 ft. There are no further communications with the tower.
02. It is likely that at last communication with the tower that the aircraft was already at 6000 ft., based on airport personnel statements and the extreme likelihood that the captain already had the Ndola approach plate in front of him, and had based his descent rate into Ndola to arrive near the minimum descent altitude (MDA) for the area.
03. The aircraft turns onto the outbound course leg and airspeed adjusted to at least 160 knots indicated airspeed. The Ndola approach plate in the U.N. report appendix gave times for approaches at 180 and 200 knots in addition; there is no way to ever know what speed was actually used. My best guess is that it would have been 160 knots.
04. At some point approximately but probably more than half way on the outbound leg course the precipitating event occurs. There is a bang, a flash of light, and then a constant partial illumination of the night sky on the left side of the aircraft.
05. The captain looks out the left cabin window and sees a section of the upper wing skin torn open upwards, with bright yellow flames billowing rearward behind that area. It is possible that he can feel some diminished lift component from the spoiler-effect of the damaged wing skin on that side, and may have moved the aileron trim to compensate.
06. Seeing this, the captain realizes quickly that they cannot expect the wing to last long enough for them to make it the three or more minutes it would take to get back to the Ndola runway; that they probably have only some number of seconds to live. He determines that he is going to land the airplane onto the ground in front of him, whatever that looks like, before the airplane breaks up. He is not going to waste the time it takes to inform Ndola tower of the situation; flight crews generally never do. Investigators wish they would.
07. With his right hand he reaches up and pulls the throttles back; with his left he holds some back pressure on the elevators and with his right hand then starts trimming the elevators nose up. Airspeed begins to decrease, heading toward flap extension speed.
08. The captain has already told the first officer and flight engineer his intentions; they are assisting him in the other physical actions necessary to configure the aircraft for slow flight and landing. It’s possible that the first officer is also assisting him in holding pressure on the ailerons to keep the wings level.
09. The aircraft is slowing down into flap extension range, beginning to descend, the captain is trimming the nose up on and off, waiting to get down to landing gear extension speed, for a large drag component to bleed off the excess altitude. The captain is nominally staying on the turn-back arc of the instrument approach.
10. The aircraft has slowed enough for landing flap angle, then landing gear speed is reached and the captain calls for gear down.
11. With the aircraft slowed well down, in an effort to speed the descent and get rid of the excess altitude, the captain pushes the nose down with the elevators. The wind noise increases, and with the nose down attitude the occupants get a sense of “great speed”, but in reality the DC-6’s landing profile is comparatively steeply nose down in normal conditions, opposite that of jet airliners, that land steeply nose up. The large double-slotted wing flaps, and modest wing loading allow for impressively steep descents at comparatively low airspeeds.
12. Seeing and sensing the proximity to the treetops, the captain begins putting back pressure on the control column, judging the round-out with the experience of 1445 hours in DC-6’s, and rolls out of the procedure turn onto the return course to the NDB. He is possibly helped in his depth perception sight picture by some of the small campfires that the local charcoal makers have burning sprinkled around the general area. He probably doesn’t need landing lights; they are useful for illuminating reflective objects and lighter colored areas/objects, but can be only distracting if there is nothing light to reflect.
13. Having leveled off just above the treetops, the captain retards the throttles to idle and holds back pressure on the elevators and adds more nose up trim to relieve the pressure, bleeding off more speed toward the stall. It is possible that the thought occurs to him for a few thousandths of a second that if he makes it through this, in the future he will insist on having some ballast in the tail on these otherwise fairly empty charter trips. Now would be a good time to be a bit tail-heavy.
14. The aircraft is gently settling, the treetops are beginning to brush the belly, the propellers are chopping off twigs, there are probably some unfamiliar sounds resulting from this.
15. The ever-increasingly sized tree branches are clattering off the sides of the fuselage from the propellers now, the sounds of tree trunks snapping off beneath the belly and wings can be heard clearly. A somewhat larger tree trunk contacts the left wing leading edge a little inboard of the tip rib and shears through the light skin, stringers, etc. and the wing tip falls away to the ground. That left wing just can’t be held up quite level, but the aircraft is still traveling straight, into a little darker darkness.
16. The captain throws the propeller switches into the reverse thrust position as a group with his right hand and when the propellers start translating he reaches for the throttles and begins advancing them forward.
17. The aircraft is halfway or more to the ground and the trees are breaking off lower and lower. The manifold pressures are coming well up and the engines are roaring, the propellers are chopping off ever-increasing sizes of limbs and trunks. The reverse thrust in addition to the arresting effect of the bending and breaking trees are having an effect; the aircraft is well below stall speed now. Landing gear doors are being battered and tearing off, as well as pieces of wing skin, wing flap skin, and possibly horizontal stabilizer leading edge skin.
18. The aircraft has made it to the ground; all three landing gear are on the forest floor. The burning left wing has not had enough time to shed molten sections of skin yet, due to the occurrence at pattern height and the captain’s immediate decision to get the airplane on the ground.
19. The left wing pushes over a larger tree, probably just outboard of the main wheels that doesn’t surrender easily and tears a sizeable hole through the bottom wing skins, instantly dumping a significant quantity of already burning fuel onto the ground.
20. Some or all of the flight deck crew could possibly, for some very small fraction of a second, think that this might turn out OK. They are on the ground, upright, still largely in one piece, all still strapped into their seats, uninjured.
21. The aircraft at this time is effectively a 38-ton bulldozer, mowing down trees on a forest floor that has probably been undisturbed for centuries, if not millennia; I don’t know the history of that area. Except that it’s not built like a bulldozer, and I doubt that one has ever been built that would move at whatever speed it was going at this moment on its own. The nose landing gear at this time cannot withstand the combination of ground roughness, imposed weight, speed, possibly flat or even missing tire, and/or other unknown factors, and collapses, tearing out and further weakening the surrounding structure. The forward fuselage and nose section have pushed the nose gear down to its collapse, and relieved of its resistance continue to plunge downward, crushing and tearing the light aluminum structure to pieces as the forward shifting center of gravity exacerbates the situation even further, as it is effectively standing what originally was a 100 ft. long fuselage on its end.
22. Immediately after this, with the nose section disintegrating, the wing leading edges rotated downward, and well powered-up engines and propellers slicing the ground, the left wing leading edge contacts near the base of the anthill, and the 38 ton mass with still considerable momentum rotates around it, side-loading the second fuselage section that attaches presumably to the front spar section of the wing, ultimately severing it.
I don’t think I need to go any farther with this; I assume the reader knows the rest of the story.
For the aircraft to have been found as described and photographed in the reports, it would have had to happen generally as I have described. A type-rated DC-6 captain could certainly provide more and better detail of the specifics of operations and actions, and a mechanic with a lot of DC-6 experience could provide more and better detail of how things worked in this case, and here in Alaska there is and has been a lot of DC-6 experience, but to my knowledge none have researched this case and come forward with their observations. I suspect that most who are currently alive are unaware of it. I don’t think I had heard of it until maybe ten years ago at the most. But, those who were aware of it at the time, even as children, have kept the account of the crash alive, and rightfully so, as it is an injustice to the memory of those whose lives were cut short.
In my view, the flight crew did everything right. I can’t see a single place where I wouldn’t have done the same thing in that situation. I can’t imagine that approach through the trees and the touchdown on the forest floor to have been accomplished more skillfully by anyone I’ve ever heard of, Eric Brown or Bob Hoover, anybody. I can only hope that I would instantly swallow my fear and act decisively in a similar situation, as this captain and crew did. They are as shining an example to all that it can be done, as others I have known and have heard of have done, as there is.
To me, it is really, and I mean really, obvious what happened there.
I have written this for the offspring, the relatives, and friends of the victims, in hopes that the dark cloud of implication that has surrounded this crew, completely unreasonably I believe, for some six decades now, can finally be lifted.
Joseph (Joe) Majerle III Anchorage, Alaska July 2021
In memory of Dag Hammarskjold on his birthday, a photo of the meditation ring from his summer house, at Backåkra. This was sent to me by my dearest friend in Sweden, tack så mycket!
In memory of the 16 who died in Ndola, here is some of the collection from my mother-in-law, Olga Fabry, who carefully saved all the documents and mementos I share here. Vlado was only 40 years old when he died, a man who was very much loved by his family and friends, and my thoughts are with all the relatives around the world who remember their family on this day. The struggle against racism and white supremacy continues for us, let us not forget their example of courage to resist, and to fight for justice.
Program from the first wreath laying ceremony at UN Headquarters, one year after the crash, 17 September 1962:
Invitation from Acting Secretary-General, U Thant, to Madame Fabry:
Letter and commemorative UN stamps from U Thant to Olga Fabry:
Signatures from UN staff were collected from all over the world to fill this two-volume set of books in memory of Vladimir Fabry:
Signatures from UN Headquarters in New York include Ralph Bunche, and his wife Ruth:
Signatures from Geneva Headquarters and a message from John A. Olver:
Telegrams from friends in every country:
Among them, a message of sympathy from the King of Sweden relayed through Ralph Bunche:
And a cable from Jozef Lettrich:
UN cables express the loss of a dear friend and highly valued colleague:
Newspaper clippings from 1961 and 1962, the first one with a photo of Olga Fabry and her mother at the funeral in Geneva, Switzerland:
The investigation will coming up for review in the General Assembly, and for those who think we should give up and be quiet about it already after all these years, Dag Hammarskjold said it best: “Never, “for the sake of peace and quiet,” deny your own experience or convictions.”
On March 30 2016, United Nations Secretary-General Ban Ki-moon was in Stockholm, Sweden for the annual Dag Hammarskjold lecture. With sincere thanks and appreciation for his strong leadership in the Hammarskjold investigation, I am posting his remarks here in full (link here). It is very touching to know that he thinks of Hammarskjold every day, and that he has done so for 60 years, since he was a young boy in Korea.
“I thank the Government and people of Sweden for a very warm welcome.
It is a singular honour to be in this magnificent and legendary City Hall … among this most distinguished audience … to deliver a lecture named for a towering hero of humanity.
Dag Hammarskjöld was Swede through and through, but he also belonged to the world.
I feel both privileged and humbled to be serving in the role he once filled so masterfully.
I also feel blessed to be serving the United Nations. During the Korean War, the United Nations was our lifeline. We survived on food from UNICEF. We were schooled with textbooks from UNESCO. We were protected by the troops of many nations serving under the UN’s blue flag.
Sweden was among the nations that responded to the call of the Security Council for Member States to support Korea in 1950.
More than 1,000 Swedish doctors and nurses served in the Swedish Red Cross Field Hospital, and treated 19,100 UN personnel and 2400 Koreans. I greatly appreciate this strong show of international solidarity.
Following the war, Sweden continued to help promote peace and prosperity on the Korean peninsula through its involvement in maintaining the armistice as a member of the Neutral Nations Supervisory Commission.
Every day, I think of Dag Hammarskjöld in the course of my duties as Secretary-General. But you may be surprised to know, I did so even as a boy.
Sixty years ago, I was a sixth grader in rural Korea. It was 1956, and people in Hungary were facing a violent suppression of their aspirations.
We wondered: What could we do? How could we best express support from our far-off corner of the world?
Then it came to us. We will write to Dag Hammarskjöld!
As the student chair, I read the letter to my entire school at an assembly.
“Dear Mr. Secretary-General,” we pleaded, “help the people of Hungary so they can have freedom and democracy.”
I did not know Dag Hammarskjöld. Yet, half a world away, more than half a century ago, I sensed both his power as a world leader, and his approachability as a servant of humankind.
He did not simply preach these qualities. He lived them with passion and compassion.
Hammarskjöld reached people’s hearts, because he strived to understand people’s minds – their hopes and dreams and fears and aspirations.
He did so through the arts – music and poetry, literature, sculpture and photography.
He did it through spirituality and quiet contemplation.
Above all, he pursued it through his lifelong mission — an active life devoted to “selfless service”.
In October 2006, in addressing the General Assembly of the United Nations upon my election as Secretary-General, I shared the story of a boy who had once sent a letter to Dag Hammarskjold. I expressed the wish that I would not receive such letters from children around the world.
Sadly, today, I do receive the appeals that I once sent as a schoolboy. It is I who must do what Hammarskjöld did: defend the values enshrined in the UN Charter; direct our dedicated staff; and steer the Member States towards our common goals.
The world is changing—dramatically, rapidly.
We are more connected than ever before. More people than ever live in cities.
New economic powers are rising. There are more than three times as many members of the United Nations as there were in Hammarskjöld’s day.
New threats have emerged—climate change above all.
And the human family has a new profile: more than half the earth’s people are under the age of 25.
Our shared challenge is to shape this new world for the better—to build a landscape of opportunity and peace, while conquering persistent injustices, from hatred to hunger.
Around the world, we are being tested in old ways that Hammarskjöld would have recognized — and in new ways for which his example can remain our guide.
Massive displacement – the most since the Second World War.
Terrorism.
Atrocious crimes that defy all norms of humanity.
At such times, the United Nations relies on its strongest supporters to step up, speak out and stay true.
Swedes have lived and breathed the United Nations for almost 70 years. In few countries is support for the United Nations so entwined with its own national identity.
More than 80,000 Swedes have served in UN peacekeeping missions. Most recently, Swedish troops have deployed to Mali, and I welcome your efforts to increase the number of Swedish police who take part in our operations.
Swedes continue to support UN efforts to prevent and resolve conflicts through mediation and other peaceful means, continuing the noble tradition of Folke Bernadotte, Gunnar Jarring, Olof Rydbeck and Olof Palme.
I especially welcome Sweden’s support for Security Council resolution 1325 on women, peace and security, and the network of women mediators. Sweden was the first country to appoint a female Permanent Representative to the United Nations — Ms. Agda Rössel, in 1958. Today, your feminist foreign policy is bringing new voices to the table.
At a time when humanitarian needs are escalating and the funding gap is widening, you remain the world’s leading donor on a per capita basis. Even with the increased spending needed to address the needs of refugees, you have admirably maintained your commitment to development aid.
Sweden has consistently upheld human rights and universal values, including as one of the largest donors to the United Nations Democracy Fund.
And your commitment to people is equalled by your care for the planet – from the 1972 Stockholm conference on the environment, to the work of people like Bert Bolin who served as the first chairman of the Intergovernmental Panel on Climate Change, to your commitment to be one of the world’s first fossil free countries. You are also helping to mobilize action to safeguard the health of our oceans – a pressing yet often neglected challenge.
I see Sweden’s contributions every day, from my encounters with young Swedish staff members in Haiti or South Sudan — to the outstanding commitment of the United Nations Deputy Secretary-General, Jan Eliasson, who I am privileged to have serving by my side.
I am also grateful for the efforts of Sweden’s Royal Family. King Carl XVI Gustaf is a champion of climate action; Queen Silvia is an advocate of children’s rights; and I am especially pleased that Crown Princess Victoria has just agreed to be one of our Sustainable Development Goal Advocates — and I welcome her enthusiastic engagement.
All of this leads me to one conclusion: Sweden is a superpower of solidarity, dialogue and cooperation.
In the process, you are showing that leadership in the United Nations and the European Union are mutually reinforcing – as you excel at one, you advance the other — and benefit from both.
The world needs Sweden’s global citizenship more than ever. Today I would like to highlight four areas where your contributions are crucial and where I would like for us to work together to be even more ambitious: first, addressing the refugee challenge; second, advancing a more sustainable world; third, enhancing peace and security; and fourth, ensuring the strongest possible United Nations.
Let me start with one of the leading trends of our time: human mobility.
Sweden — like many countries today — is facing the challenge of refugees and migration.
Sweden — like few countries today — is setting an example of generosity and values-led action. You have accepted more refugees per capita than any other country in Europe. You should be very proud of this.
I have just come from a visit through the Middle East. I met with refugees in Jordan and Lebanon.
At least one out of four people in Lebanon is a Syrian refugee.
I heard moving tales of horror, suffering and loss.
Dag Hammarskjöld famously said that the United Nations “was not created to take mankind to heaven, but to save humanity from hell.”
These refugees have fled hell. They need our help in a spirit of shared global responsibility.
I know there are tensions and difficulties with receiving great numbers of refugees. But I have been deeply moved by the many stories of Swedish hospitality and goodwill.
My message to Sweden is to keep striving for solidarity. Recognize the economic dynamism that migrants and refugees make possible. Take a stand against negative and nativist narratives. Lead the way to more understanding guided by the universal values set out in the UN Charter.
As Jan Eliasson has said, “Sweden is a part of the global community – but the world is also part of Sweden. An open and tolerant Sweden is a richer Sweden. Building strong and fair communities is a contribution to international peace and security.”
I completely agree. Making the most of the blessing of diversity is the winning strategy of the 21st century.
That leads me to the second area where we need Sweden’s leadership – building a sustainable world.
Around the continent, and around the world, I have urged leaders and citizens to avoid the siren songs of those who sow fear, hate and division.
This cannot be a world of “us and them” — it must be a world of “we the peoples”.
That is the spirit of the 2030 Agenda for Sustainable Development with its 17 Sustainable Development Goals, the SDGs. This is a 15-year blueprint to end global poverty approved by world leaders last September. It embodies a commitment to leave no one behind. In many respects, it is a global Declaration of Interdependence.
I know Sweden is very familiar with the SDGs and the principles underlying it. That is because you were at the forefront in shaping it and in bringing peace, development and human rights together under one umbrella.
Sweden also understood something else from the start — that while promises read well on paper, it takes political action to deliver on the ground. I want to commend Prime Minister Löfven for convening a high-level support group of world leaders to sustain the political momentum for implementation.
You have realized these goals are crucial for your own country’s progress — and, once again, the Prime Minister has led the way in mobilizing ministers to drive progress. You understand a sustainable world will be a safer, more prosperous and equitable world.
As Hammarskjöld said and as we all know, there will be no development without peace.
This is the third area where we can build on the Hammarskjöld legacy.
In Syria, the cessation of hostilities has now held, by and large, for more than a month. This has given us greater humanitarian access and opened up space for diplomacy. Talks are making progress and will resume in 10 days. These are being led by my Special Envoy, Staffan de Mistura, another distinguished peacemaker with strong Swedish roots.
We are also moving towards a cease-fire and peace talks in Yemen, where civilians have borne the brunt of Coalition aerial attacks and other violence.
From South Sudan to Mali and Afghanistan, we must resolve the conflicts that are causing so much displacement and destruction.
We must also do more to heed a long-known lesson: prevention saves lives and money.
We are now taking forward the recommendations of recent reviews of UN peace operations and peacebuilding that highlighted the need for greater emphasis on prevention.
Our Human Rights up Front initiative is a further effort to identify, and act on, the earliest signs of exclusion and other violations.
Earlier this month, we marked the 10th anniversary of the Human Rights Council – a major institutional reform that has fortified this key UN pillar. One of the architects of the Council was none other than Jan Eliasson, who served as President of the General Assembly session that brought it into being.
The terrorism and violent extremism we are seeing today is a direct assault on human rights. There can never be any justification for such acts. To tackle this challenge, we need to examine the underlying drivers. That means addressing discrimination, ensuring good governance, and providing access to education, social services and employment opportunities. In launching a plan of action to prevent violent extremism, we must also avoid responses that violate human rights and thereby feed the problem we are trying to solve.
Ending impunity for the most serious crimes of international concern is a crucial part of our work for peace. With the International Criminal Court, international and UN-assisted tribunals and courts, and other mechanisms, the world has entered an age of accountability. Prosecutions may still take a long time; not all perpetrators have been brought to trial; but the trend is unmistakable: more justice for societies and more support for the victims.
The conviction last week of Radovan Karadizc for genocide in Srebrenica, as well as for crimes against humanity and war crimes, was a further welcome step in this direction. Our goal is a reckoning for the crimes of the past — and a deterrent to the crimes of the future.
Across our agenda, the United Nations must lead by example, and that means ensuring we are fit for the 21st century. That is the fourth and final area where I believe we must continue to make greater progress.
As I said on my first day in office, we reform the United Nations because we believe in its future — and I will continue to act on that conviction until my last day in office.
I publicly issued my financial disclosure statement on day one, the first Secretary-General to do so. I have strengthened results-based management and linked senior appointments to performance. I have streamlined and harmonized UN contracts, and am very proud of the many glass ceilings that have been broken at the United Nations.
I have appointed more women to senior positions than at any time in UN history. We have been strengthened by the contributions of dynamic Swedish leaders such as Foreign Minister Margot Wallstrom, who served as my first Special Representative on Sexual Violence in Conflict, and Ann Marie Orler, the first woman to serve as “top cop” of the United Nations — leading more than 10,000 UN Police worldwide.
But I also know reform is never-ending. My team and I feel a strong sense of duty to work from within to transform the Organization – and to face our failings when we fall short.
There is nothing more outrageous — there is no greater violation of trust — than sexual exploitation and abuse by those who have been sent to a country to protect innocent people.
I am sickened and shamed that the unspeakable acts of a few have tainted the valiant work of many thousands, and caused some to see the UN’s blue helmet as a symbol of fear.
As I told the Security Council earlier this month, to all the victims and their families, I profoundly apologize.
Any abuse of power by peacekeepers betrays the very people they have been sent to protect. It also betrays the values of the United Nations.
Under my leadership, we are taking unprecedented action.
We are improving oversight so that troops with known histories of abuses will never be deployed.
We are strengthening investigations so that individuals or entire contingents that commit abuses will be sent home.
We are naming names and withholding payments. We are establishing a trust fund to better support victims.
Last year, I relieved one Special Representative of his command – and I have appointed a special coordinator to deepen our work to protect people and uphold the highest standards of professionalism.
My message to all UN peacekeeping leaders is clear: report allegations immediately, and act decisively.
Of course, the United Nations does not have criminal jurisdiction over troops, so my message to the countries that contribute forces is equally clear: Promptly investigate the allegations. Quickly punish the perpetrators. Hold your personnel accountable.
Zero tolerance must be the rule.
Sexual exploitation and abuse have no place – least of all in the United Nations which stands for the rights of women and children.
In all of our work, Dag Hammarskjöld remains a touchstone for courageous, principled action.
When I visited his gravesite in Uppsala on the 50th anniversary of his death, I laid a wreath in honour of his life and reflected on the timeless example of his service. It is in recognition of that devotion that the medal we give to the families of fallen peacekeepers is named in his honour.
Hammarskjöld was a private person who lived the most public of lives.
We know, for example, that he carried a UN Charter with him at all times.
We also know some of his innermost thoughts, as set out in “Markings”, his own personal code of conduct.
But there is one thing about Hammarksjöld that remains a mystery: the circumstances leading to his death — and the deaths of those who accompanied him.
We are doing everything to find out what happened.
Last year, a UN panel considered new information, including by interviewing eyewitnesses who had not been interviewed before in official inquiries. The Panel concluded that some of the new information was sufficient to warrant further consideration of whether aerial attack or other interference may have caused the crash.
I want to use this platform today to urge Member States with intelligence or other material in their archives to provide that information without delay. We must do everything to finally establish the facts and get to the bottom of this tragedy once and for all.
Dag Hammarskjold often met with United Nations staff. In 1958, the gathering began with a song that he had asked the UN choir to learn — one of his favorite Swedish folk tunes.
It inspired a poem that concludes by asking: “Will the day ever come when joy is great and sorrow is small?”
Hammarskjold reminded the staff that the United Nations is tasked to inch the world closer to such a day.
But then he added an even deeper personal observation. He noted that whenever we are carrying out a duty “well fulfilled and worth our while”, we can already see joy as great and sorrow as being small.
I see those twin messages rooted in the Swedish character: to both work for a better world and to find ultimate meaning and reward in doing so.
That is the Swedish mission, the Swedish purpose. In so many ways, you are more than a country, you are an example. You are a champion and a role model.
Together, let us continue to build a world of greater joy and lesser sorrow.
Together, let us strive to narrow the gap between the world as it is, and the world as we know it can be.